P2.2-2) The velocity of a particle is given by v(t) = at - b, where v is in m/s, t is in seconds, a = 2 and b = 8. Plot the position, velocity and acceleration of the particle between t = 0 and t = 5 seconds. Determine the position, velocity and acceleration of the particle at t = 2 seconds if the position of the particle is at the origin when t = 0. Also, determine the displacement of the particle and total distance traveled by the particle between t = 0 seconds and 5 seconds.

<u>Given:</u>

Find:

Solution:

Derive the Position

Circle the equation that you will use?

$$v = \frac{ds}{dt}$$
 $a = \frac{dv}{dt}$ $a ds = v dv$

What are your limits of integration?

Position limits

- > Low _____
- High _____

Time limits

- ➢ Low ______
- High ______

Calculate the Velocity at 2 seconds.

*V*_t = 2 s = _____

Derive the Acceleration

Circle the equation that you will use?

$$v = \frac{ds}{dt}$$
 $a = \frac{dv}{dt}$ $a ds = v dv$

s(*t*) = _____

*S*_{*t* = 2 s} = _____

a(*t*) = _____

 $a_{t=2s}$ = _____

Does the particle turn within 0 and 5 seconds?	Calculate the Total Distance traveled between 0 and 5 seconds
Yes No	$S_{t = turn} = $
	Draw a line graph for the position of the particle.
If the particle turns, at what time does it turn?	
<i>t_{turn}</i> =	
Calculate the displacement between 0 and 5 seconds.	
$S_{t=0} = 0$	
<i>S</i> _{<i>t</i> = 5 s} =	
$\Delta s_{t=0 \text{ to } 5} = _$	
	$S_{total} = $

Plot the position, velocity and acceleration

